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1. Introduction

Chemotaxis (from chemo- + taxis) is movement of an organism in response to
a chemical stimulus.

Somatic cells, bacteria, and other
single cell or multicellular organisms

Importance

» For bacteria to find food (for example, glucose ) by swimming toward the
highest concentration of food molecules, or to flee from poisons (for
example, phenol).

> In multicellular organisms, chemotaxis is critical to early development (e.g.,
movement of sperm towards the egg during fertilization) and subsequent
phases of development (e.g., migration of neurons or lymphocytes) as well as
in normal function.

» It has been recognized that mechanisms that allow chemotaxis in animals can
be subverted during cancer metastasis.

» Transfer external signals to chemical signals in acupuncture.

Positive chemotaxis occurs if the movement is toward a higher
concentration of the chemical.
Negative chemotaxis occurs if the movement is in the opposite direction.
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http://en.wikipedia.org/wiki/Chemical_substance
http://en.wikipedia.org/wiki/Chemical_substance
http://en.wikipedia.org/wiki/Taxis

1. Introduction

Picture from wikipedia




1. Introduction: bioconvection model
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a) Bacteria cells are denser than water (about 10% denser)
b) Bacteria swim upwards on average so that the density of

an initially uniform gradient becomes greater at the top
than the bottom




Pattern formation in concentrated suspension of swimming bacteria (Kessler 1989)
Bacillus subtilis
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1. Introduction: bioconvection model

A. J. Hillesdon , T. J. Pedley and J. O. Kessler 1995

Neglecting

v' Sedimentation and Brownian diffusion

v The biological growth and decay of the bacterial population

v The influence of rotation or straining in the ambient flow on the
orientation and hence swimming direction of a cell

v The interaction between cells

% +Ve(uc—D,VC)=—xr(c)n, K, 0Xygen consumption rate
on %, chemotactic sensitivity
E FVelun— D”vn X nvel=0, V,, volume of bacterium
p(a_u+uovuj:_Vp“Nz“—”ng(pb—p)j, _joe=c
ot Lc>cC

Veu = 0. $8H




Characteristic variables

Rescaling variables as follows :

D C
9td:_ntacd:_9n — p —
Cair

H is a characteristic length

D, is cell diffusivity
C.ir IS oxygen concentration of the air above the fluid
n, is characteristic cell density

v is Kinetic viscosity of fluid
p© is density of fluid
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Dimensionless governing equations

%Jrv-(uc) =Le V’c—Pn,

% +Ve(un)+S, V+(nVc) =V°n,

%w-wz—vmpg V?u-Pr.Ra_nj, Fluid

Veu =0.

— 3 _ 2
1% :Vbnrg(,on p)H [ DC’ S _ XCair P:’mrH

3 eT:_ T > T
D’ uD. D D c, D

n n air —c

Taxis Prandtl number, taxis Rayleigh number, taxis Lewis number,
chemotaxis sensitivity number and chemotaxis production number.

I'=L/H, aspect ratio

Chemotaxis




Dimensionless boundary conditions

Air interface

wall

L wall
Boundary conditions:
S.cn—-n =0,c=1,u,=0,v=0, at y=1, top
n,=c,=0, u=0,v=0, at y=0, bottom
(1) freeslip sidewalls
n=c =0 u=0,v =0, at x=0and x=d, sidewalls

(2) noslip sidewalls
n=c =0 u=0,v =0, at x=0and x=d sidewalls




Exact solution for shallow convection: Hillesdon et al. 1995

s Ay
cos(—— Ay 2
C(y)=1—slln Sz , n(y)=§ Sz 281 :
: \cos(EAy)) © = cos (;Ay)

A1 is a constant determined by total cell number.

Primary goal : evaluate the finite length effect (r) and chemotaxis
effect (S_P_) on the onset of convection
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2. Numerical methods

¥ Nonlinear simulation method

€ Linear stability analysis method
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2.1 Nonlinear simulation

N
% H(U+S.cn] +[(v+S.c )n]|= V°n,
oC 5
P +|(uc), +(vc),|=Le, V°c—P.n,
Second order Second order
central upwind central
ou

— H(u), +(uv), [=[Pr, V°u

— px’

ot

— +{(uv). +(V = Pr V°v
P (uv), +(v%), IPT

—Pr. Ra_n—p,.
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Nonlinear simulation: Central upwind method

X X y y
dn _ Hi+(1/2),j - Hi—(l/z),j B Hi,j+(1/2) - Hi,j—(1/2)

dt AX Ay

X —
Hii(l/z),j - (U T STCX)n | (Xix(1/2)>Yj)

y —
Hi,ji(l/Z) o (V+ STCy)n | (%> Yjx(1/2))

( e .
" | an, M if &, ;>0
i(1/2),j = ) " ”
(Qiro, My W Qg < 0,
( n .
H B bi+(1/2),jni,j if &, ,,; >0,
iLj+(1/2) =) b S " 0
a2, i &g <V,
X AX
e —_ =
ni,j: i,j+7(nx)i,j9 ni,j— ij_7(nx)|19

A A
ni,j:ni,j+7y(ny)i,j9 ni,j:ni,j_%(ny)i,ja

Ref. A. Chertock et al. JFM (2012), 694, pp. 155-190

R

TVD Minmod2 reconstruction
Is applied for derivatives

(nx)i,j7 (ny)i,j
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Nonlinear simulation: Temporal discretization

Third order TVD Runge-Kutta (SSP-RK) schemes is
used




2.2 Linear stability analysis
Writingn =n+n',c=c+d,u=u+dv,v=0+v.,p=p+p

substitute to the control equations, we get the linearized equations,

%—i +(uc'+cu’), +(vc'+cv ')y = LeTV2C'— Pn’,
%—2+[(U+Srfx)n'+ (u'+S.c' I, +[(V+S.CHn'+(v'+S.c' )], =V’n!,
ou'

— Q)+ @), =Pr VAU,

% +(Ov'+u’), + (2W'), = Pr, V?v'=Pr Ra_n'-p 'y -

Sf(ﬁc'y+6yn')—n'y:0, c'=0,u', =0,v'=0, at y=1,
n',=c',=0,u'=0,v'=0, at y=0,
n,=c' =0, u'=0,v' =0, at x=0and x=d

B.C.
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Linear stability analysis method

The linearized system can be written as:

aq
- Aq,
ot |

where, q=[n,c,u,v]', A=(N, +L)

Assuming time exponential dependence, solution for q of the

form A A ~ ~ T qot A ot
q=[N(x,y), C(X,y), U(X,y),V(x,y)] € =q(x,y)e

Can be sought, where the variables with a hat represent the
eigenfunctions, and o =0, +lo; , with &, the growth rate and o, its

angular frequency. The eigenvalue problem is

Ad =o0q,
which can be solved with corresponding boundary condition
after discretization.
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Linear stability analysis method

Time-stepper-based approach
Discretizing the linearized equations with first order Euler implicit

method, |
q —-q" ] .
=N + L ,

g™ = (I- AtL) ' (AtN, +D)g"
= (I- AtL) "' (AtN, + AtL + I- AtL)Q"
=q" +At(I- AtL) (N, + L)q"
=q" +At(N, +L)q" (At <<1)

_ eAt(Nu+L)qn

AtA 4N

= q

Arnoldi’'s method is used to obtain the leading eigenvalues of e**,
thus the eigenvalues of A can be obtained (Arpack).

Ref. Annual review 2011, V. Theofilis, Global Linear Instability.
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Numerical test- nonlinear simulation

A comparison between analytical and numerical solution

Ny=50

1k Analytical solution
Sr -10 i 0 Numerical solution
P =10
Le =5
A=r/20

dens
0115

0.103
0.093
0.083
0.073
0.063




Numerical test- nonlinear simulation

Comparison of present results with FEM results.

|

Initial conditions: 4507
- 2 4.50652—
TX :
1,y>0.5+0.1cos(—) ss00r
3 ®1.5055 -
n,=- 5 I
7Z'X S 4505
0.5, y<0.5+0.lcos(T) ssoeo]
CO:1 4.5035; o
.5 ¢ 1 1.5
U, = 0, Vo = 0 n_total increase 0.14%
1
i | | | | I | | | | I | | | I | | | | I | | | I | | | |
1 2 3 4 5
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In the following, blue lines represent FEM result and red
lines indicate present FVM result

eComparison of cell distribution. (contours of n) 40X240
grid
The value of blue line is in (0.3854-2.8266) 50X300

The value of red line is in (0.3873-2.6346)

1 = == NS : =

S
0.5 — . 5 " 5 .

eComparison of oxygen distribution.(contours of c)
The value of blue line is in (0.7255-1)
The value of red line is in (0.7225-1)

1
—— ——
e e ——
e —
N m
0_3 /V V\




Numerical test- Linear stability analysis

Lid-driven cavity flow, Re=1000
F a O Refe ®
» ererence
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08 08
ooy s e e B
Im(\) Im(})

unstable

Reference

-0.0680717

Second central (256X256) -0.0680663
Second central (320X320) -0.0680747

Ref. Xavier Merle et al. Computer & Fluids (2010) 39, 911-925

$23H




Numerical test- Linear stability analysis
Unipolar injection, C=10

210
205 |-

200 |-

VAN Present
Ref.

195 F

190 &

r

185 F
180
175 F A

170 F

165 |

160 : I L L L L I L L L L I L L L L I
Aspect ratio

Base flow Stability curve
Ref. Wu Jian et al. PRE E88 053018 (2013)
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Numerical test- Linear stability analysis
Bioconvection in suspension of oxytancitic baccteria

Le, S P Ra«(ref.) Ra«(Pres.) Discrepancy

T

’ 0.05 10200 10205 0.05%

’ 1 625 624 0.16%

1 10 200 200.1 0.05%

’ 50 328 325 0.91%

1 100 522 522.4 0.077%
10 10 241 238 1.2%

Ref. A. J. Hillesdon and T. J. Pedley JFM (1996), 324, pp. 223.

The horizontal direction is periodic in this paper. In present
computation, free slip wall boundary is used and L=6Ac, where
Acis critical wave length in horizontal direction.
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Control parameters setting

Initial cell concentration N, = 10°cm™®

[nitial oxygen concentration C ~ 1.5 x 10" molecules cm™
Max. cell diffustvity D, x13x10%cm*s!

Max. cell swimming speed V,ox2x10% cms™?

Oxygen diffusivity D ~212x107° cm*s!
Chemotaxis constant a x~ min (0.14, 0.05 cm)
Max. oxygen consumption rate K, =~ 10 molecules cell™! 57!
Cell density ratio (0,—p)/p,. =

Dynamic viscosity
Cell volume
Density ot water
Kinematic viscosity

TaBLE 1. Estimates of typical dimensional parameters for a suspension of Bacillus subtilis.

TS 10‘2 gem s

rx 1072 em?
p,x1.0gem™

v 107 cm?s!

A. J. Hillesdon and T. J. Pedley JFM 1996

Tuval et al. Proc. Natl Acad. Sci.

2005

S_=10, Le_=5, Pr. =500
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The estimation of dimensionless parameters

D
Le =—=

r

»2-20

n

1% L
Pr, = —, varieswith Le_

T
n

. 3
Ra :Vnnrg(pn IO)L , 102_104

T

uD,
. =%,10-100 Le =5
" ) Pr. =500
p =20l 5500 S P =1-50
C.
alr C F:1_8
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3. Linear stability results
Base flow:

cosCAy)
cos(— Ay Le A2
()=l —2—— | A=A
T 2 T
7 cos(—= 4 cos” (—
\ 5 AY) ) (5 AY)
Wi
o (S SP=1
:' L"E ................... SP=5
e ———— SP-10
e SP =25
b S.P =50
R 10}'}@ 15 20 25




3. Linear stability results

800 5
i 2000}
600 X
[ —— No-slip . No-slip
gP N Free-slip e Free-slip

100}

p—_—1
.
_— -
—— - =
_——
T Em o am m am = - ==

2001

$20H



3. Linear stability results

6005'
5003_ No-slip
o |
X r
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Summary

v A matrix-free method is adapt to analysis linear
instability of a bioconvection system

v' Chemotaxis driven convection is much different from
thermal convection

v Sidewall boundary condition has less effect on flow

instability when T is large and S+Pr is small

Future work

v’ Linear stability of deep convection
v"Numerical simulation of nonlinear development of flow
patterns
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Thank you!
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